2,000 research outputs found

    Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish

    Get PDF
    The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species

    Spatial genetic structure in the saddled sea bream (Oblada melanura [Linnaeus, 1758]) suggests multi-scaled patterns of connectivity between protected and unprotected areas in the Western Mediterranean Sea

    Get PDF
    Marine protected areas (MPAs) and networks of MPAs are advocated worldwide for the achievement of marine conservation objectives. Although the knowledge about population connectivity is considered fundamental for the optimal design of MPAs and networks, the amount of information available for the Mediterranean Sea is currently scarce. We investigated the genetic structure of the saddled sea bream ( Oblada melanura) and the level of genetic connectivity between protected and unprotected locations, using a set of 11 microsatellite loci. Spatial patterns of population differentiation were assessed locally (50-100 km) and regionally (500-1000 km), considering three MPAs of the Western Mediterranean Sea. All values of genetic differentiation between locations (Fst and Jost's D) were non-significant after Bonferroni correction, indicating that, at a relatively small spatial scale, protected locations were in general well connected with non-protected ones. On the other hand, at the regional scale, discriminant analysis of principal components revealed the presence of a subtle pattern of genetic heterogeneity that reflects the geography and the main oceanographic features (currents and barriers) of the study area. This genetic pattern could be a consequence of different processes acting at different spatial and temporal scales among which the presence of admixed populations, large population sizes and species dispersal capacity, could play a major role. These outcomes can have important implications for the conservation biology and fishery management of the saddled sea bream and provide useful information for genetic population studies of other coastal fishes in the Western Mediterranean Sea

    Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas

    Get PDF
    In the marine context, information about dispersal is essential for the design of networks of marine protected areas (MPAs). Generally, most of the dispersal of demersal fishes is thought to be driven by the transport of eggs and larvae in currents, with the potential contribution of dispersal in later life stages relatively minimal.Using otolith chemistry analyses, we estimate dispersal patterns across a spatial scale of approximately 180. km at both propagule (i.e. eggs and larvae) and juvenile (i.e. between settlement and recruitment) stages of a Mediterranean coastal fishery species, the two-banded seabream Diplodus vulgaris. We detected three major natal sources of propagules replenishing local populations in the entire study area, suggesting that propagule dispersal distance extends to at least 90. km. For the juvenile stage, we detected dispersal of up to 165. km. Our work highlights the surprising and significant role of dispersal during the juvenile life stages as an important mechanism connecting populations. Such new insights are crucial for creating effective management strategies (e.g. MPAs and MPA networks) and to gain support from policymakers and stakeholders, highlighting that MPA benefits can extend well beyond MPA borders, and not only via dispersal of eggs and larvae, but also through movement by juveniles

    Research on the meaning of the enzymatic systems (GPI and PGM) as parameters for the definition of varieties (Vitis sp.): The Italian case of Cabernet franc

    Get PDF
    Several studies carried out at Davis and Conegliano showed that isozyme analysis of the GPI and PGM enzymatic systems agrees with the conventional definition of the variety in ampelography. Differences were reported among varieties but not among biotypes of the same varieties. The only exception recorded was in the population of Cabernet franc in which GPI and PGM reveal two different types (A - the traditional type encountered in France and B - type encountered in the Italian region of Veneto). Further ampelographic, ampelometric, phenological and chemical studies on the polyphenolic and aromatic substances in fruits have shown considerable differences between the two types. Such differences demonstrate that the type B is a different variety and not a clone of Cabernet franc. Preliminary ampelographic analysis and the equality in GPI and PGM patterns lead to the conclusion that the type B very probably is CarmenĆØre.Therefore, the hypothesis of variety discrimination based on the analysis of GPI and PGM is valid and this method is useful to help to characterize the varieties

    Patterns of variability in early life traits of a Mediterranean coastal fish

    Get PDF
    Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for understanding life cycles, properly assessing patterns of connectivity and gathering indications about patchiness or homogeneity of larval pools. Considering that little attention has been paid to spatial variability in these traits, we investigated variability of ELT from the analysis of otolith microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern Adriatic Sea, along ~200 km of coast (āˆ¼1Ā° in latitude, 41.2Ā° to 40.2Ā°N), variability of ELT was assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates (October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Multiple causal processes underlying the observed variability are discussed, along with the need to properly consider spatial variability in ELT, for example when delineating patterns of connectivity. Copyright Ā© 2013 Inter-Research

    Genetic improvement for crossbreeding in table grape varieties

    Get PDF
    Genetic improvement by crossbreeding of table grape varieties was realized at the Istituto Sperimentale per la Viticoltura for the achievement of the following main targets: early species, seedless species, species with high content of fructose in grapes and, at the same time, a research concerning the hereditary transmission of these features. The results are the followings: Registration in the National Catalogue of the varieties of 4 new table grape varieties that are interesting for their ripening (IC. 199, LC. 218, IC. 120, IC. 213).Information concerning the heritability of earliness, average weight of grape and bunch for the varieties examined.Achievement of varieties that have a ratio between the two monosaccharides considerably tending towards fructose. This feature remains constant throughout the years

    Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems

    Get PDF
    We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the so called optimal test space norm by using an element subgrid discretization. This should make the DPG method not only stable but also robust, that is, uniformly stable with respect to the P'eclet number in the current application. The effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. Ā© 2011 Published by Elsevier Ltd

    Refined isogeometric analysis for generalized Hermitian eigenproblems

    Get PDF
    We use refined isogeometric analysis (rIGA) to solve generalized Hermitian eigenproblems (Ku = Ī»Mu). rIGA conserves the desirable properties of maximum-continuity isogeometric analysis (IGA) while it reduces the solution cost by adding zero-continuity basis functions, which decrease the matrix connectivity. As a result, rIGA enriches the approximation space and reduces the interconnection between degrees of freedom. We compare computational costs of rIGA versus those of IGA when employing a Lanczos eigensolver with a shift-and-invert spectral transformation. When all eigenpairs within a given interval [Ī»_s,Ī»_e] are of interest, we select several shifts Ļƒ_k āˆˆ [Ī»_s,Ī»_e] using a spectrum slicing technique. For each shift Ļƒ_k, the factorization cost of the spectral transformation matrix K āˆ’ Ļƒ_k M controls the total computational cost of the eigensolution. Several multiplications of the operator matrix (K āˆ’ Ļƒ_k M)^āˆ’1 M by vectors follow this factorization. Let p be the polynomial degree of the basis functions and assume that IGA has maximum continuity of pāˆ’1. When using rIGA, we introduce C^0 separators at certain element interfaces to minimize the factorization cost. For this setup, our theoretical estimates predict computational savings to compute a fixed number of eigenpairs of up to O(p^2) in the asymptotic regime, that is, large problem sizes. Yet, our numerical tests show that for moderate-size eigenproblems, the total observed computational cost reduction is O(p). In addition, rIGA improves the accuracy of every eigenpair of the first N_0 eigenvalues and eigenfunctions, where N_0 is the total number of modes of the original maximum-continuity IGA discretization
    • ā€¦
    corecore